Search this site
TLMaths
  • Home
    • A-Level Maths
      • AS ONLY
        • A: Proof
          • A1. Proof
        • B: Algebra & Functions
          • B1. Indices
          • B2. Surds
          • B3: Quadratics
          • B4: Simultaneous Equations
          • B5: Inequalities
          • B6: Polynomials
          • B7: Graphs & Proportion
          • B9: Graph Transformations
        • C: Coordinate Geometry
          • C1: Coordinate Geometry
          • C2: Circles
        • D: Sequences & Series
          • D1: Binomial Expansion
        • E: Trigonometry
          • E1: Trigonometry
          • E3: Trig Graphs
          • E5: Trigonometric Identities
          • E7: Trig Equations
        • F: Exponentials & Logarithms
          • F1: Exponentials
          • F2: Exponential Models
          • F3: Logarithms
          • F4: Laws of Logarithms
          • F5: Exponential & Logarithmic Equations
          • F6: Reduction to Linear Form
          • F7: Exponential Growth & Decay
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
        • H: Integration
          • H1: Fundamental Theorem of Calculus
          • H2: Indefinite Integrals
          • H3: Definite Integrals
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J3: Resultant & Parallel Vectors
          • J4: Position Vectors
          • J5: Vector Problems
        • K: Statistical Sampling
          • K1: The Large Data Set & Sampling Methods
        • L: Data Presentation & Interpretation
          • L1: Box Plots, Cumulative Frequency & Histograms
          • L2: Scatter Graphs
          • L3: Central Tendency & Variation
          • L4: Outliers & Cleaning Data
        • M: Probability
          • M1: Venn Diagrams, Tree Diagrams & Two-Way Tables
        • N: Statistical Distributions
          • N1: Discrete Random Variables & The Binomial Distribution
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O2: Binomial Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q1: Displacement, Velocity & Acceleration
          • Q2: Graphs of Motion
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
        • R: Forces & Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R3: Weight and Tension
          • R4: Newton's Third Law and Pulleys
      • 2nd Year ONLY
        • A: Proof
          • A1: Proof
        • B: Algebra & Functions
          • B6: Polynomials & Rational Expressions
          • B7: Graphs & Proportion
          • B8: Functions
          • B9: Graph Transformations
          • B10: Algebraic Fractions
          • B11: Modelling
        • C: Coordinate Geometry
          • C3: Parametric Equations
          • C4: Parametric Equation Modelling
        • D: Sequences & Series
          • D1: Binomial Expansion
          • D2: Sequences
          • D3: Sigma Notation
          • D4: Arithmetic Sequences
          • D5: Geometric Sequences
          • D6: Modelling with Sequences
        • E: Trigonometry
          • E1: Trigonometry
          • E2: Small Angle Approximation
          • E3: Trig Graphs
          • E4: Further Trigonometry
          • E5: Trigonometric Identities
          • E6: Compound Angles & Equivalent Forms
          • E7: Trig Equations
          • E8: Proving Trigonometric Identities
          • E9: Trigonometry in Context
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
          • G4: Further Differentiation
          • G5: Implicit Differentiation & Parametric Differentiation
          • G6: Forming Differential Equations
        • H: Integration
          • H2: Indefinite Integrals
          • H3: Definite Integrals & Parametric Integration
          • H4: Integration as the Limit of a Sum
          • H5: Further Integration
          • H6: Integration with Partial Fractions
          • H7: Differential Equations
          • H8: Differential Equations in Context
        • I: Numerical Methods
          • I1: The Change of Sign Method
          • I2: The x=g(x) Method & The Newton-Raphson Method
          • I3: Numerical Integration
          • I4: Numerical Methods in Context
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J5: Vector Problems
        • M: Probability
          • M2: Conditional Probability
          • M3: Modelling with Probability
        • N: Statistical Distributions
          • N2: The Normal Distribution
          • N3: Appropriate Distributions
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O3: Sample Means Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
          • Q5: Projectiles
        • R: Forces and Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R4: Newton's Third Law and Pulleys
          • R5: F=ma & Differential Equations
          • R6: The Coefficient of Friction
        • S: Moments
          • S1: Moments
      • FULL A-Level
        • A: Proof
          • A1: Proof
        • B: Algebra & Functions
          • B1: Indices
          • B2: Surds
          • B3: Quadratics
          • B4: Simultaneous Equations
          • B5: Inequalities
          • B6: Polynomials & Rational Expressions
          • B7: Graphs & Proportion
          • B8: Functions
          • B9: Graph Transformations
          • B10: Algebraic Fractions
          • B11: Modelling
        • C: Coordinate Geometry
          • C1: Coordinate Geometry
          • C2: Circles
          • C3: Parametric Equations
          • C4: Parametric Equation Modelling
        • D: Sequences & Series
          • D1: Binomial Expansion
          • D2: Sequences
          • D3: Sigma Notation
          • D4: Arithmetic Sequences
          • D5: Geometric Sequences
          • D6: Modelling with Sequences
        • E: Trigonometry
          • E1: Trigonometry
          • E2: Small Angle Approximation
          • E3: Trig Graphs
          • E4: Further Trigonometry
          • E5: Trigonometric Identities
          • E6: Compound Angles & Equivalent Forms
          • E7: Trig Equations
          • E8: Proving Trigonometric Identities
          • E9: Trigonometry in Context
        • F: Exponentials & Logarithms
          • F1: Exponentials
          • F2: Exponential Models
          • F3: Logarithms
          • F4: Laws of Logarithms
          • F5: Exponential & Logarithmic Equations
          • F6: Reduction to Linear Form
          • F7: Exponential Growth & Decay
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
          • G4: Further Differentiation
          • G5: Implicit Differentiation & Parametric Differentiation
          • G6: Forming Differential Equations
        • H: Integration
          • H1: Fundamental Theorem of Calculus
          • H2: Indefinite Integrals
          • H3: Definite Integrals & Parametric Integration
          • H4: Integration as the Limit of a Sum
          • H5: Further Integration
          • H6: Integration with Partial Fractions
          • H7: Differential Equations
          • H8: Differential Equations in Context
        • I: Numerical Methods
          • I1: The Change of Sign Method
          • I2: The x=g(x) Method & The Newton-Raphson Method
          • I3: Numerical Integration
          • I4: Numerical Methods in Context
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J3: Resultant & Parallel Vectors
          • J4: Position Vectors
          • J5: Vector Problems
        • K: Statistical Sampling
          • K1: The Large Data Set & Sampling Methods
        • L: Data Presentation & Interpretation
          • L1: Box Plots, Cumulative Frequency & Histograms
          • L2: Scatter Graphs
          • L3: Central Tendency & Variation
          • L4: Outliers & Cleaning Data
        • M: Probability
          • M1: Venn Diagrams, Tree Diagrams & Two-Way Tables
          • M2: Conditional Probability
          • M3: Modelling with Probability
        • N: Statistical Distributions
          • N1: Discrete Random Variables & The Binomial Distribution
          • N2: The Normal Distribution
          • N3: Appropriate Distributions
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O2: Binomial Hypothesis Testing
          • O3: Sample Means Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q1: Displacement, Velocity & Acceleration
          • Q2: Graphs of Motion
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
          • Q5: Projectiles
        • R: Forces and Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R3: Weight & Tension
          • R4: Newton's Third Law and Pulleys
          • R5: F=ma & Differential Equations
          • R6: The Coefficient of Friction
        • S: Moments
          • S1: Moments
      • Revision Tips Videos
      • Enrolment Work
      • Teaching Order Year 1
        • 101&116: Linear Graphs
          • a. Introducing Coordinate Geometry
          • b. Finding the Midpoint
          • c. Finding the Distance between Two Points
          • d. Finding the Gradient
          • e. The Equation of a Line
          • f. Parallel & Perpendicular Lines
          • g. Sketching Linear Graphs
          • h. Perpendicular Bisectors
          • i. Intersection of Lines
          • j. An Application of Linear Graphs
        • 102&111: Quadratic Graphs
          • a. The Difference of Two Squares
          • b. Factorising Quadratics
          • c. Sketching Quadratics from Factorised Form
          • d. Completing the Square
          • e. Sketching Quadratics from Completed Square Form
          • f. Solving Quadratics
          • g. Using the Discriminant
          • h. Using the Quadratic Formula
          • i. Sketching Quadratics using the Quadratic Formula
          • j. Using Quadratic Methods for Solving
        • 103-104: Indices
        • 103-104: Surds
          • a. Simplifying Surds
          • b. Rationalising the Denominator
        • 105-107: Exponentials and Logarithms
          • a. Introducing Exponentials
          • b. Asymptotes
          • c. Introducing Logarithms
          • d. Laws of Logarithms
          • e. Solving Basic Exponential Equations
          • f. Solving More Complicated Exponential Equations
          • g. Solving an Inequality Problem
        • 108: e^x and ln(x)
          • a. Introducing e
          • b. The Natural Logarithm
          • c. The Laws of Logarithms
          • d. Exponential Equations
          • e. Logarithmic Equations
          • f. The Gradient Function of e^(kx)
        • 109-110: Exponential Growth & Decay
        • 112-113: Polynomials
          • a. Introducing Polynomials
          • b. Polynomial Division
          • c. The Factor Theorem
        • 114: Graph Sketching
          • a. Sketching Polynomials
          • b. Reciprocal Graphs
          • c. Finding Points of Intersection
          • d. Direct & Inverse Proportion
        • 115: Graph Transformations
          • a. An Investigation into Transformations
          • b. Translations
          • c. Stretches
          • d. Reflections
          • e. Examples of Transformations
        • 117-118: Equation of a Circle
          • a. The Equation of a Circle
          • b. Sketching Circles
          • c. Completing the Square
          • d. Intersections with Circles
          • e. Circle Theorems
          • f. Perpendicular Bisectors
          • g. Tangents & Normals
        • 119-120: Reduction to Linear Form
        • 121-122: Inequalities
          • a. Introducing Inequalities, Set Notation and Interval Notation
          • b. Linear Inequalities
          • c. Quadratic Inequalities
          • d. Discriminant Inequalities
          • e. More Inequalities
          • f. Representing Inequalities Graphically
        • 123: Differentiation from First Principles
        • 124: Graphs of Motion
          • a. Position vs Displacement vs Distance
          • b. Velocity vs Speed
          • c. Acceleration and Deceleration
          • d. Displacement / Time Graphs
          • e. Velocity / Time Graphs
          • f. Acceleration / Time Graphs
          • g. Graphs of Motion
        • 125-126: Constant Acceleration - 1D SUVAT
          • a. Deriving the SUVAT formulae
          • b. Using the SUVAT formulae
          • c. Gravity
          • d. More Complicated SUVAT Problems
        • 127: Differentiating x^n
        • 128: Differentiation - Tangents & Normals
        • 129: Differentiation - Stationary Points
        • 130-131: Second Derivatives and Points of Inflection
          • a. Increasing / Decreasing
          • b. The Second Derivative Test
          • c. Types of Stationary Point
          • d. Convex & Concave
          • e. Points of Inflection
        • 132: Differentiation - Optimisation
        • 133: Linear Regression & PMCC
          • a. Bivariate Data
          • b. The Product Moment Correlation Coefficient
          • c. Regression Lines
          • d. Interpolation vs Extrapolation
        • 134-135: Probability
          • a. Basic Probability Concepts and Notation
          • b. Venn Diagrams
          • c. Independent & Mutually Exclusive Events
          • d. Conditional Probability
          • e. Tree Diagrams
          • f. Two-Way Tables
          • g. Histograms
          • h. More Conditional Probability
        • 136: Mean and Standard Deviation
          • a. Ungrouped Data
          • b. Grouped Data
          • c. Comparing Data Sets
          • d. Variance and Standard Deviation
        • 137: Outliers and Using Statistical Diagrams
          • a. Linear Coding
          • b. Identifying Outliers
          • c. Critiquing & Cleaning Data
          • d. Box Plots / Box and Whisker Diagrams
          • e. Cumulative Frequency Curves
          • f. Histograms
        • 138-139: Pascal's Triangle, nCr & Binomial Expansion
          • a. The Factorial Function
          • b. Pascal's Triangle
          • c. Algebra Problems with nCr
          • d. Binomial Expansion
          • e. Finding a Coefficient
          • f. Approximating using Binomial Expansion
        • 140: Discrete Random Variables
          • a. Introducing Discrete Random Variables
          • b. Discrete Random Variables as Algebraic Functions
        • 141: Binomial Distribution
        • 142-143: Binomial Hypothesis Testing
          • a. Introducing Hypothesis Testing
          • b. Binomial Hypothesis Testing
          • c. The Critical Region Method
        • ###: Sampling Methods & The Large Data Set
          • a. Sampling Methods
          • b. The Large Data Set
        • 144: Integration
          • a. Integrating x^n
          • b. Finding the Constant of Integration
        • 145 & 147: Integration - Finding Areas
          • a. The Fundamental Theorem of Calculus
          • b. Finding Areas
          • c. Definite Integrals
          • d. Areas Between Two Curves
        • 146: The Trapezium Rule
        • 148-149: 1D Variable Acceleration
        • 150: Proof
          • a. Introduction to Proof
          • b. Proof by Exhaustion
          • c. Proof by Deduction
          • d. Disprove by Counter-Example
        • 151: Basic Trigonometry
          • a. SOHCAHTOA
          • b. The Sine Rule
          • c. The Cosine Rule
          • d. The Area of a Triangle
        • 152: Radians, Sectors & Arc Length
          • a. Radians
          • b. Arc Length
          • c. Sector Area
        • 153: Vectors
          • a. Introducing Vectors
          • b. The Magnitude & Direction of a 2D Vector
          • c. The Angle Between Two Vectors
          • d. Resultant Vectors
          • e. Parallel and Unit Vectors
          • f. Collinear Points
          • g. Position Vectors
          • h. Vector Problems
        • 154-157: Forces & Newton's Laws
          • a. Introducing Forces
          • b. Force Diagrams
          • c. Resultant Forces
          • d. Newton's First Law
          • e. Newton's Second Law
          • f. Working with the SUVAT Equations
          • g. Weight & Tension
          • h. Newton's Third Law
          • i. Lifts and Scale Pans
        • 158-162: Trigonometry
          • a. Trig Graphs
          • b. Trigonometric Identities
          • c. Basic Trigonometric Equations
          • d. Quadratic Trigonometric Equations
          • e. Using tan(x) = sin(x) / cos(x)
          • f. Trigonometric Equations with Transformations
          • g. More Quadratic Trigonometric Equations
          • h. Using sin^2(x) + cos^2(x) = 1
          • i. sin(x) and cos(x) as Transformations of one another
        • 163: Coefficient of Friction
        • 164-165: Blocks / Pulleys on a Slope
      • Teaching Order Year 2
        • 201-203: Domain, Range & Composite Functions
          • a. What is a Function?
          • b. The Domain and Range of a Function
          • c. One-to-One, Many-to-One, One-to-Many, Many-to-Many
          • d. Restricting the Domain
          • e. Even & Odd Functions
          • f. Set Notation and Interval Notation for Domain & Range
          • g. Composite Functions
        • 204: Graph Transformations
        • 205: Inverse Functions
        • 206: Modulus Functions
        • 209-210,213-214: Sequences and Series
          • a. GCSE Sequences Revision
          • b. Inductive Definitions & Recurrence Relations
          • c. Describing Sequences
          • d. Sigma Notation
          • e. Arithmetic Sequences
          • f. Arithmetic Series
          • g. Geometric Sequences
          • h. Geometric Series
          • i. Sum to Infinity
          • j. Modelling with Sequences
        • 211-212: Moments
          • a. Introducing Moments
          • b. Centre of Mass
          • c. Equilibrium of a Rigid Body
          • d. Tilting
        • 215: Inverse Trigonometric Functions
        • 216-217: sec(x), cosec(x) & cot(x)
          • a. Introducing & Sketching cosec(x), sec(x) & cot(x)
          • b. Trigonometric Identities
          • c. Solving Trigonometric Equations
        • 218: Compound Angle Formulae
        • 219-220: Double Angle Formulae
        • 221-222: Differentiating Standard Functions & The Chain Rule
          • a. Differentiating Standard Functions
          • b. The Chain Rule
        • 223: Differentiation - Connected Rates of Change
        • 224: Differentiation - The Product Rule
        • 225: Differentiation - The Quotient Rule
        • 227-228: Implicit Differentiation
        • 229: Reversing the Chain Rule
        • 230-231: Integration by Substitution
        • 232-233: Integration by Parts
          • a. Integration by Parts Once
          • b. Integrating ln(x)
          • c. Integration by Parts Twice
          • d. Tabular Method for Integration by Parts
          • e. Further Integration
        • 234-235: Partial Fractions
          • a. Simplifying Algebraic Fractions
          • b. Adding and Subtracting Algebraic Fractions
          • c. Simplifying using Polynomial Division
          • d. Introducing Partial Fractions
          • e. Repeated Factors
          • f. Extensions
          • g. Partial Fractions with Binomial Expansion & Integration
        • 237-239: Numerical Methods
          • a. The Change of Sign Method
          • b. The x = g(x) Method
          • c. The Newton-Raphson Method
        • 240-242: Differential Equations
          • a. Solving Differential Equations
          • b. Differential Equations in Context
          • c. Forming Differential Equations
        • 243: 2D SUVAT
        • 244: 2D Variable Acceleration
        • 245-246: Projectiles
          • a. Introduction to Projectiles
          • b. Projectiles from the Ground - SUVAT method
          • c. Projectiles from a Height - SUVAT method
          • d. Derive a Formula for Maximum Height & Distance - SUVAT method
          • e. Projectiles from the Ground - Integration method
          • f. Projectiles from a Height - Integration method
          • g. Derive a Formula for Maximum Height & Distance - Integration method
        • 247-248: Binomial Expansion
          • a. Extending Binomial Expansion
          • b. The Range of Validity
        • 249: 3D Vectors
          • a. Introducing 3D Vectors
          • b. The Magnitude of a 3D Vector
          • c. The Angle Between Two 3D Vectors
          • d. Vector Problems
        • 250-251: Trigonometry - Harmonic Forms Rsin(θ + α), Rcos(θ + α)
        • 252: Small Angle Approximation
        • 253-255: The Normal Distribution
          • a. Introducing the Normal Distribution
          • b. Finding Probabilities
          • c. The Inverse Normal
          • d. Normal to Binomial & Normal to Histogram
          • e. Approximating the Binomial Distribution
          • f. Points of Inflection of the Normal Distribution
        • 256: Parametric Equations
          • a. Introducing Parametric Equations
          • b. Cartesian to Parametric
          • c. Graphing Parametric Curves
          • d. Parametric to Cartesian
          • e. Ellipses
          • f. Modelling with Parametric Equations
        • 257-259: Parametric Differentiation & Integration
          • a. Parametric Differentiation
          • b. Parametric Integration
        • 260: Proof by Contradiction
        • 261: Sample Means Hypothesis Testing
          • a. Sample Means & Standard Errors
          • b. Hypothesis Testing
        • 262: PMCC Hypothesis Testing
      • Casio Classwiz How To
      • Bumper Book of Integrals
    • A-Level Further Maths
      • PURE
        • A: Proof
          • A1: Proof by Induction
        • B: Complex Numbers
          • B1: Introducing Complex Numbers
          • B2: Working with Complex Numbers
          • B3: Complex Conjugates
          • B4: Introducing the Argand Diagram
          • B5: Introducing Modulus-Argument Form
          • B6: Multiply and Divide in Modulus-Argument Form
          • B7: Loci with Argand Diagrams
          • B8: De Moivre's Theorem
          • B9: z = re^(iθ)
          • B10: nth Roots of Unity
          • B11: Geometrical Problems
        • C: Matrices
          • C1: Introducing Matrices
          • C2: The Zero & Identity Matrices
          • C3: Matrix Transformations
          • C4: Invariance
          • C5: Determinants
          • C6: Inverse Matrices
          • C7: Simultaneous Equations
          • C8: Geometrical Interpretation
          • AQA C9: Factorising Determinants
          • AQA C10: Eigenvalues and Eigenvectors
          • AQA C11: Diagonalisation
          • EXTRA PURE C12: Cayley-Hamilton Theorem
        • D: Further Algebra & Functions
          • D1: Roots of Polynomials
          • D2: Forming New Equations
          • D3: Summations
          • D4: Method of Differences
          • D5: Introducing Maclaurin Series
          • D6: Standard Maclaurin Series
          • AQA D7: Limits and l'HoĚ‚pital's Rule
          • AQA D8: Polynomial Inequalities
          • AQA D9: Rational Function Inequalities
          • AQA D10: Modulus of Functions
          • AQA D11: Reciprocal Graphs
          • AQA D12: Linear Rational Functions
          • AQA D13: Quadratic Rational Functions
          • AQA D14: Discriminants
          • AQA D15: Conic Sections
          • AQA D16: Transformations
        • E: Further Calculus
          • E1: Improper Integrals
          • E2: Volumes of Revolution
          • E3: Mean Value
          • E4: Partial Fractions
          • E5: Differentiating Inverse Trig
          • E6: Integrals of the form (a^2-x^2)^(-½) and (a^2+x^2)^(-1)
          • AQA E7: Arc Length and Sector Area
          • AQA E8: Reduction Formulae
          • AQA E9: Limits
        • F: Further Vectors
          • F1: Equations of Lines
          • F2: Equations of Planes
          • F3: The Scalar Product
          • F4: Perpendicular Vectors
          • F5: Intersections
          • F6: The Vector Product
        • G: Polar Coordinates
          • G1: Polar Coordinates
          • G2: Polar Curves
          • G3: Polar Integration
        • H: Hyperbolic Functions
          • H1: Hyperbolic Functions
          • H2: Hyperbolic Calculus
          • H3: Hyperbolic Inverse
          • H4: Hyperbolic Inverse
          • H5: Hyperbolic Integration
          • AQA H6: Hyperbolic Identities
          • AQA H7: Hyperbolic Identities
        • I: Differential Equations
          • I1: 1st Order Differential Equations - Integrating Factors
          • I2: 1st Order Differential Equations - Particular Solutions
          • I3: Modelling
          • I4: 2nd Order Homogeneous Differential Equations
          • I5: 2nd Order Non-Homogeneous Differential Equations
          • I6: 2nd Order Non-Homogeneous Differential Equations
          • I7: Simple Harmonic Motion
          • I8: Damped Oscillations
          • I9: Systems of Differential Equations
          • AQA I10: Hooke's Law
          • AQA I11: Damping Force
        • J: Numerical Methods
          • AQA J1: Mid-Ordinate Rule & Simpson's Rule
          • AQA J2: Euler's Step by Step Method
          • AQA J3: Euler's Improved Step by Step Method
      • OCR MEI Modelling with Algorithms
        • A: Tracing an Algorithm
        • B: Bin Packing
        • C: Sorting Algorithms
        • D: Graph Theory
        • E: Minimum Spanning Trees
        • F: Dijkstra's Algorithm
        • G: Critical Path Analysis
        • H: Network Flows
        • I: Linear Programming
        • J: Simplex Algorithm
        • K: LP Solvers
      • OCR MEI Statistics a / Minor
        • A: PMCC
        • B: Linear Regression
        • C: PMCC Hypothesis Testing
        • D: Spearman’s Rank
        • E: Chi-Squared Contingency Table Tests
        • F: Discrete Random Variables
        • G: Discrete Uniform Distributions
        • H: Geometric Distributions
        • I: Binomial Distribution
        • J: Poisson Distribution
        • K: Goodness of Fit Tests
      • Teaching Order Year 1
        • 01: Core Pure - Matrices: Basics
          • a. Introducing Matrices
          • b. The Zero & Identity Matrices
        • 02: Core Pure - Matrices: 2D Transformations
        • 03: Core Pure - Matrices: Invariant Points
        • 04: Core Pure - Matrices: 3D Transformations
        • 05: Modelling with Algorithms - Algorithms and Bin Packing
          • a. Tracing an Algorithm
          • b. Bin Packing
        • 06: Modelling with Algorithms - Sorting Algorithms
        • 07: Modelling with Algorithms - Graph Theory
        • 08: Modelling with Algorithms - Kruskal's, Prim's & Dijkstra's Algorithms
          • a. Minimum Spanning Trees
          • b. Dijkstra's Algorithm
        • 09: Core Pure - Complex Numbers: Basics
          • a. Introducing Complex Numbers
          • b. Working with Complex Numbers
          • c. Complex Conjugates
        • 10: Core Pure - Complex Numbers: Argand Diagrams
          • a. Introducing the Argand Diagram
          • b. Introducing Modulus-Argument Form
          • c. Multiply and Divide in Modulus-Argument Form
          • d. Loci with Argand Diagrams
        • 11: Modelling with Algorithms - Critical Path Analysis
        • 12: Modelling with Algorithms - Network Flows
        • 13: Modelling with Algorithms - Graphical Linear Programming
        • 14: Modelling with Algorithms - LP Solver: Shortest Path, CPA, Network Flow
        • 15: Modelling with Algorithms - Simplex Algorithm
        • 16: Modelling with Algorithms - LP Solver: Matching, Transportation Problem
        • 17: Core Pure - Series: Using Formulae
        • 18: Core Pure - Series: Method of Differences
        • 19: Core Pure - Matrices: Inverses, Singular Matrices, Simultaneous Equatio
          • a. Determinants
          • b. Inverse Matrices
          • c. Simultaneous Equations
        • 20: Core Pure - Matrices: Invariant Lines
        • 21: Core Pure - Roots of Polynomials
          • a. Roots of Polynomials
          • b. Forming New Equations
        • 22: Core Pure - Proof by Induction: Series
        • 23: Core Pure - Proof by Induction: Sequences
        • 24: Core Pure - Proof by Induction: Matrices
        • 25: Core Pure - Vectors: Scalar Product
          • a. The Scalar Product
          • b. Perpendicular Vectors
        • 26: Core Pure - Vectors: Planes
          • a. Geometrical Interpretation
          • b. Equations of Planes
        • 27: Statistics - PMCC
        • 28: Statistics - Linear Regression
        • 29: Statistics - PMCC Hypothesis Testing
        • 30: Statistics - Spearman's Rank Correlation Coefficient
        • 31: Statistics - Chi-Squared Contingency Table Tests
        • 32: Statistics - Discrete Random Variables
        • 33: Statistics - Discrete Uniform Distribution
        • 34: Statistics - Geometric Distribution
      • Teaching Order Year 2
        • 01: Core Pure - Polar Curves
          • a. Polar Coordinates
          • b. Polar Curves
        • 02: Core Pure - Vectors: Lines
          • a. Lines
          • b. Intersections
        • 03: Core Pure - Matrices: Determinant and Inverse of a 3x3 Matrix
          • a. Determinants
          • b. Inverse Matrices
          • c. Simultaneous Equations
        • 11: Core Pure - Vectors: Vector Product
        • 12: Core Pure - Proof by Induction: Divisibility
        • 13: Core Pure - Complex Numbers: De Moivre's Theorem & Roots of Unity
          • a. De Moivre's Theorem
          • b. z = re^(iθ)
          • c. nth Roots of Unity
          • d. Geometrical Problems
        • 14: Core Pure - Partial Fractions & Series
          • a. Method of Differences with Partial Fractions
          • b. Partial Fractions
        • 15: Core Pure - Calculus: Improper Integrals
        • 16: Core Pure - Calculus: Mean Value
        • 17: Core Pure - Calculus: Volumes of Revolution
        • 18: Core Pure - Calculus: Areas with Polar Curves
        • 19: Core Pure - Calculus: Inverse Trig Functions
          • a. Differentiating Inverse Trig
          • b. Integrals of the form (a^2-x^2)^(-½) and (a^2+x^2)^(-1)
        • 20: Core Pure - Hyperbolic Functions
          • a. Hyperbolic Functions
          • b. Hyperbolic Calculus
          • c. Hyperbolic Inverse
          • d. More Hyperbolic Inverse
          • e. Hyperbolic Integration
        • 21: Core Pure - Series: Maclaurin Series
          • a. Introducing Maclaurin Series
          • b. Standard Maclaurin Series
        • 22: Core Pure - Differential Equations: First Order
          • a. Integrating Factors
          • b. Particular Solutions
          • c. Modelling
        • 23: Core Pure - Differential Equations: Second Order
          • a. 2nd Order Homogeneous Differential Equations
          • b. 2nd Order Non-Homogeneous Differential Equations
          • c. Examples
        • 24: Core Pure - Differential Equations: Damped Simple Harmonic Motion
          • a. Simple Harmonic Motion
          • b. Damped Oscillations
        • 25: Core Pure - Differential Equations: Systems of DEs
    • Core Maths Level 3 Certificate
      • Core Maths Resources
      • Teaching Videos
        • AQA Mathematical Studies Paper 1
        • AQA Mathematical Studies Paper 2A
        • Basics
    • GCSE to A-Level Maths Bridging the Gap
    • Legacy A-Level Maths 2004
      • AQA C1
        • 1. Coordinate Geometry
        • 2. Surds
        • 3. Quadratics
        • 4. Inequalities
        • 5. Polynomials
        • 6: Equations of Circles
        • 7: Differentiation
        • 8: Integration
      • AQA C2
        • 1. Indices
        • 2. Differentiation & Integration
        • 3. Logarithms
        • 4. Graph Transformations
        • 5. Sequences & Series
        • 6: Binomial Expansion
        • 7: Trigonometry 1
        • 8: Trigonometry 2
      • AQA C3
        • 1. Exponentials & Logarithms
        • 2. Functions
        • 3. Modulus Functions
        • 4. Graph Transformations
        • 5. Trigonometry
        • 6. Differentiation
        • 7. Integration
        • 8. Solids of Revolution
        • 9. Numerical Methods
      • AQA C4
        • 1. Partial Fractions
        • 2. Parametric Equations
        • 3. Binomial Expansion
        • 4. Trigonometry
        • 5. Differential Equations
        • 6. Implicit Equations
        • 7. Vectors
      • AQA D1
        • 1. Tracing an Algorithm
        • 2. Sorting Algorithms
        • 3. Graph Theory
        • 4. Kruskal's Algorithm & Prim's Algorithm
        • 5. Dijkstra's Algorithm
        • 6. Bipartite Graphs
        • 7. Chinese Postman Algorithm
        • 8. The Travelling Salesperson Problem
        • 9. Linear Programming
      • AQA S1
        • 1. Mean & Standard Deviation
        • 2. Probability
        • 3. Binomial Probability
        • 4. The Normal Distribution
        • 5. Central Limit Theorem & Estimation
        • 6. Confidence Intervals
        • 7. Linear Regression
        • 8. The Product Moment Correlation Coefficient
      • OCR MEI C1
        • 1. Surds
        • 2. Coordinate Geometry
        • 3. Quadratics
        • 4. Inequalities
        • 5. Indices
        • 6. Translations
        • 7. Polynomials
        • 8. Binomial Expansion
        • 9. Equations of Circles
        • 10. Proof
      • OCR MEI C2
        • 1. Exponentials & Logarithms
        • 2. Trigonometry 1
        • 3. Differentiation 1
        • 4. The Trapezium Rule & Integration
        • 5. Sequences & Series
        • 6. Graph Transformations
        • 7. Trigonometry 2
        • 8. Differentiation 2
      • OCR MEI C3
        • 1. Exponentials & Logarithms
        • 2. Functions
        • 3. Modulus Functions
        • 4. Differentiation Rules
        • 5. Differentiating Functions
        • 6. Implicit Differentiation
        • 7. Integration
        • 8. Proof
      • OCR MEI C4
        • 1. Trigonometry
        • 2. Parametric Equations
        • 3. Binomial Expansion
        • 4. Vectors
        • 5. Partial Fractions
        • 6. Differential Equations
        • 7. The Trapezium Rule & Volumes of Revolution
        • 8. Comprehension
      • OCR MEI S1
        • 1. Probability
        • 2. Mean & Standard Deviation
        • 3. Discrete Random Variables
        • 4. Permutations & Combinations
        • 5. Binomial Probabilities
        • 6. Hypothesis Testing
        • 7. GCSE Recap & Odd and Ends
      • OCR MEI S2
        • 1. Correlation & Regression
        • 2. The Poisson Distribution
        • 3. The Normal Distribution
        • 4. The Chi-Squared Contingency Table Test
    • Legacy GCSE Maths Foundation
      • 01. Addition, Subtraction, Multiplication & Division
      • 02. Rounding & Negative Numbers
      • 03. Fractions
      • 04. Primes, Factors, Multiples, Squares, Cubes & Reciprocals
      • 05. Fractions, Decimals & Percentages
      • 06. Time, Money, Best Buys, Currency Exchange & Simple Interest
      • 07. Ratio & Speed, Distance, Time
      • 08. Types of Data, Questionnaires & Bar Charts
      • 09. Mean, Median, Mode & Range
      • 10. Pie Charts & Stem and Leaf Diagrams
      • 11. Frequency Polygons, Histograms & Scatter Graphs
      • 12. Probability
      • 13. Algebraic Expressions
      • 14. Solving Equations & Trial and Improvement
      • 15. Coordinates & Plotting Graphs
      • 16. Sequences & Inequalities
      • 17. Angles & Parallel Lines
      • 18. Triangles & Symmetry
      • 19. Quadrilaterals, Polygons & Tessellation
      • 20. Bearings & Constructions
      • 21. Circles
      • 22. Compound Shapes, 3D Shapes, Elevations & Nets
      • 23. Translations, Reflections, Rotations & Enlargement
      • 24. Pythagoras' Theorem & Metric to Imperial Conversion
TLMaths

234-235: Partial Fractions

Home > A-Level Maths > Teaching Order Year 2 > 234-235: Partial Fractions

a. Simplifying Algebraic Fractions

b. Adding and Subtracting Algebraic Fractions

c. Simplifying using Polynomial Division

d. Introducing Partial Fractions

e. Repeated Factors

f. Extensions

g. Partial Fractions with Binomial Expansion & Integration

Report abuse
Page details
Page updated
Google Sites
Report abuse