Search this site
TLMaths
  • Home
    • A-Level Maths
      • AS ONLY
        • A: Proof
          • A1. Proof
        • B: Algebra & Functions
          • B1. Indices
          • B2. Surds
          • B3: Quadratics
          • B4: Simultaneous Equations
          • B5: Inequalities
          • B6: Polynomials
          • B7: Graphs & Proportion
          • B9: Graph Transformations
        • C: Coordinate Geometry
          • C1: Coordinate Geometry
          • C2: Circles
        • D: Sequences & Series
          • D1: Binomial Expansion
        • E: Trigonometry
          • E1: Trigonometry
          • E3: Trig Graphs
          • E5: Trigonometric Identities
          • E7: Trig Equations
        • F: Exponentials & Logarithms
          • F1: Exponentials
          • F2: Exponential Models
          • F3: Logarithms
          • F4: Laws of Logarithms
          • F5: Exponential & Logarithmic Equations
          • F6: Reduction to Linear Form
          • F7: Exponential Growth & Decay
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
        • H: Integration
          • H1: Fundamental Theorem of Calculus
          • H2: Indefinite Integrals
          • H3: Definite Integrals
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J3: Resultant & Parallel Vectors
          • J4: Position Vectors
          • J5: Vector Problems
        • K: Statistical Sampling
          • K1: The Large Data Set & Sampling Methods
        • L: Data Presentation & Interpretation
          • L1: Box Plots, Cumulative Frequency & Histograms
          • L2: Scatter Graphs
          • L3: Central Tendency & Variation
          • L4: Outliers & Cleaning Data
        • M: Probability
          • M1: Venn Diagrams, Tree Diagrams & Two-Way Tables
        • N: Statistical Distributions
          • N1: Discrete Random Variables & The Binomial Distribution
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O2: Binomial Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q1: Displacement, Velocity & Acceleration
          • Q2: Graphs of Motion
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
        • R: Forces & Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R3: Weight and Tension
          • R4: Newton's Third Law and Pulleys
      • 2nd Year ONLY
        • A: Proof
          • A1: Proof
        • B: Algebra & Functions
          • B6: Polynomials & Rational Expressions
          • B7: Graphs & Proportion
          • B8: Functions
          • B9: Graph Transformations
          • B10: Algebraic Fractions
          • B11: Modelling
        • C: Coordinate Geometry
          • C3: Parametric Equations
          • C4: Parametric Equation Modelling
        • D: Sequences & Series
          • D1: Binomial Expansion
          • D2: Sequences
          • D3: Sigma Notation
          • D4: Arithmetic Sequences
          • D5: Geometric Sequences
          • D6: Modelling with Sequences
        • E: Trigonometry
          • E1: Trigonometry
          • E2: Small Angle Approximation
          • E3: Trig Graphs
          • E4: Further Trigonometry
          • E5: Trigonometric Identities
          • E6: Compound Angles & Equivalent Forms
          • E7: Trig Equations
          • E8: Proving Trigonometric Identities
          • E9: Trigonometry in Context
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
          • G4: Further Differentiation
          • G5: Implicit Differentiation & Parametric Differentiation
          • G6: Forming Differential Equations
        • H: Integration
          • H2: Indefinite Integrals
          • H3: Definite Integrals & Parametric Integration
          • H4: Integration as the Limit of a Sum
          • H5: Further Integration
          • H6: Integration with Partial Fractions
          • H7: Differential Equations
          • H8: Differential Equations in Context
        • I: Numerical Methods
          • I1: The Change of Sign Method
          • I2: The x=g(x) Method & The Newton-Raphson Method
          • I3: Numerical Integration
          • I4: Numerical Methods in Context
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J5: Vector Problems
        • M: Probability
          • M2: Conditional Probability
          • M3: Modelling with Probability
        • N: Statistical Distributions
          • N2: The Normal Distribution
          • N3: Appropriate Distributions
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O3: Sample Means Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
          • Q5: Projectiles
        • R: Forces and Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R4: Newton's Third Law and Pulleys
          • R5: F=ma & Differential Equations
          • R6: The Coefficient of Friction
        • S: Moments
          • S1: Moments
      • FULL A-Level
        • A: Proof
          • A1: Proof
        • B: Algebra & Functions
          • B1: Indices
          • B2: Surds
          • B3: Quadratics
          • B4: Simultaneous Equations
          • B5: Inequalities
          • B6: Polynomials & Rational Expressions
          • B7: Graphs & Proportion
          • B8: Functions
          • B9: Graph Transformations
          • B10: Algebraic Fractions
          • B11: Modelling
        • C: Coordinate Geometry
          • C1: Coordinate Geometry
          • C2: Circles
          • C3: Parametric Equations
          • C4: Parametric Equation Modelling
        • D: Sequences & Series
          • D1: Binomial Expansion
          • D2: Sequences
          • D3: Sigma Notation
          • D4: Arithmetic Sequences
          • D5: Geometric Sequences
          • D6: Modelling with Sequences
        • E: Trigonometry
          • E1: Trigonometry
          • E2: Small Angle Approximation
          • E3: Trig Graphs
          • E4: Further Trigonometry
          • E5: Trigonometric Identities
          • E6: Compound Angles & Equivalent Forms
          • E7: Trig Equations
          • E8: Proving Trigonometric Identities
          • E9: Trigonometry in Context
        • F: Exponentials & Logarithms
          • F1: Exponentials
          • F2: Exponential Models
          • F3: Logarithms
          • F4: Laws of Logarithms
          • F5: Exponential & Logarithmic Equations
          • F6: Reduction to Linear Form
          • F7: Exponential Growth & Decay
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
          • G4: Further Differentiation
          • G5: Implicit Differentiation & Parametric Differentiation
          • G6: Forming Differential Equations
        • H: Integration
          • H1: Fundamental Theorem of Calculus
          • H2: Indefinite Integrals
          • H3: Definite Integrals & Parametric Integration
          • H4: Integration as the Limit of a Sum
          • H5: Further Integration
          • H6: Integration with Partial Fractions
          • H7: Differential Equations
          • H8: Differential Equations in Context
        • I: Numerical Methods
          • I1: The Change of Sign Method
          • I2: The x=g(x) Method & The Newton-Raphson Method
          • I3: Numerical Integration
          • I4: Numerical Methods in Context
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J3: Resultant & Parallel Vectors
          • J4: Position Vectors
          • J5: Vector Problems
        • K: Statistical Sampling
          • K1: The Large Data Set & Sampling Methods
        • L: Data Presentation & Interpretation
          • L1: Box Plots, Cumulative Frequency & Histograms
          • L2: Scatter Graphs
          • L3: Central Tendency & Variation
          • L4: Outliers & Cleaning Data
        • M: Probability
          • M1: Venn Diagrams, Tree Diagrams & Two-Way Tables
          • M2: Conditional Probability
          • M3: Modelling with Probability
        • N: Statistical Distributions
          • N1: Discrete Random Variables & The Binomial Distribution
          • N2: The Normal Distribution
          • N3: Appropriate Distributions
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O2: Binomial Hypothesis Testing
          • O3: Sample Means Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q1: Displacement, Velocity & Acceleration
          • Q2: Graphs of Motion
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
          • Q5: Projectiles
        • R: Forces and Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R3: Weight & Tension
          • R4: Newton's Third Law and Pulleys
          • R5: F=ma & Differential Equations
          • R6: The Coefficient of Friction
        • S: Moments
          • S1: Moments
      • Revision Tips Videos
      • Enrolment Work
      • Teaching Order Year 1
        • 101: Linear Graphs
        • 102: Quadratic Graphs
        • 103: Indices & Surds 1
        • 104: Indices & Surds 2
        • 105: Exponentials and Logarithms
        • 106: Logarithms 1
        • 107: Logarithms 2
        • 108: e^x and ln(x)
        • 109: Logarithms 3
        • 110: Exponential Growth & Decay 1
        • 111: Exponential Growth & Decay 2
        • 112: Polynomials 1
        • 113: Polynomials 2
        • 114: Graph Sketching Polynomials
        • 115. Graph Sketching Rational Functions
        • 116: Graph Transformations
        • 117: Coordinate Geometry
        • 118: Equation of a Circle 1
        • 119: Equation of a Circle 2
        • 120: Reduction to Linear Form 1
        • 121: Reduction to Linear Form 2
        • 122: Inequalities 1
        • 123 Inequalities 2
        • 124: Differentiation from First Principles
        • 125: Graphs of Motion
        • 126: Constant Acceleration SUVAT 1
        • 127: Constant Acceleration SUVAT 2
        • 128: Differentiation
        • 129: Differentiation - Tangents & Normals
        • 130: Differentiation - Stationary Points
        • 131: Second Derivatives and Points of Inflection 1
        • 132: Second Derivatives and Points of Inflection 2
        • 133: Differentiation - Optimisation
        • 134: Linear Regression & PMCC
        • 135: Probability 1
        • 136: Probability 2
        • 137: Mean and Standard Deviation
        • 138: Outliers and Using Statistical Diagrams
        • 139: Pascal's Triangle & nCr
        • 140: Binomial Expansion
        • 141: Discrete Random Variables
        • 142: Binomial Distribution
        • 143: Binomial Hypothesis Testing 1
        • 144: Binomial Hypothesis Testing 2
        • 145: Integration
        • 146: Integration - Finding Areas
        • 147: The Trapezium Rule
        • 148: Integration - Areas between Curves
        • 149: Variable Acceleration 1
        • 150: Variable Acceleration 2
        • 151: Proof
        • 152: Basic Trigonometry
        • 153: Radians, Sectors & Arc Length
        • 154: Vectors
        • 155: Introducing Forces & Equilibrium
        • 156: Newton's 2nd Law
        • 157: Connected Particles 1
        • 158: Connected Particles 2
        • 159: Trigonometric Equations 1
        • 160: Trigonometric Equations 2
        • 161: Trigonometric Identities 1
        • 162: Trigonometric Identities 2
        • 163: Trigonometric Modelling
        • 164: The Coefficient of Friction
        • 165: Blocks on a Slope
        • 166: Blocks and Pulleys on a Slope
      • Teaching Order Year 2
        • 201: Domain and Range
        • 202: Domain, Range & Composite Functions
        • 203: Even, Odd and Periodic Functions
        • 204: Graph Transformations
        • 205: Inverse Functions
        • 206: Modulus Functions
        • 209: Sequences - Inductive Definitions
        • 210: Arithmetic Sequences
        • 211: Moments 1
        • 212: Moments 2
        • 213: Geometric Sequences
        • 214: Sequences and Series
        • 215: Inverse Trigonometric Functions
        • 216: sec(x), cosec(x) & cot(x) 1
        • 217: sec(x), cosec(x) & cot(x) 2
        • 218: Compound Angle Formulae
        • 219: Double Angle Formulae 1
        • 220: Double Angle Formulae 2
        • 221: Differentiation - Standard Functions
        • 222: Differentiation - The Chain Rule
        • 223: Differentiation - Connected Rates of Change
        • 224: Differentiation - The Product Rule
        • 225: Differentiation - The Quotient Rule
        • 226: Choosing Differentiation Methods
        • 227: Implicit Differentiation 1
        • 228: Implicit Differentiation 2
        • 229: Reversing the Chain Rule
        • 230: Integration by Substitution 1
        • 231: Integration by Substitution 2
        • 232: Integration by Parts 1
        • 233: Integration by Parts 2
        • 234: Partial Fractions 1
        • 235: Partial Fractions 2
        • 236: Choosing Integration Methods
        • 237: Numerical Methods - Change of Sign Method
        • 238: Numerical Methods - x=g(x) Method
        • 239: Numerical Methods - Newton-Raphson Method
        • 240: Differential Equations 1
        • 241: Differential Equations 2
        • 242: Forming Differential Equations
        • 243: 2D Constant Acceleration - SUVAT
        • 244: 2D Variable Acceleration
        • 245: Projectiles 1
        • 246: Projectiles 2
        • 247: Binomial Expansion 1
        • 248: Binomial Expansion 2
        • 249: 3D Vectors
        • 250: Trigonometry - Harmonic Forms 1
        • 251: Trigonometry - Harmonic Forms 2
        • 252: Small Angle Approximation
        • 253: The Normal Distribution - Finding Probabilities
        • 254: The Normal Distribution - Inverse Normal
        • 255: The Normal Distribution - Approximations
        • 256: Parametric Equations
        • 257: Parametric Differentiation 1
        • 258: Parametric Differentiation 2
        • 259: Parametric Integration
        • 260: Proof by Contradiction
        • 261: Sample Means Hypothesis Testing
        • 262: PMCC Hypothesis Testing
      • Casio Classwiz How To
      • Bumper Book of Integrals
    • A-Level Further Maths
      • PURE
        • A: Proof
          • A1: Proof by Induction
        • B: Complex Numbers
          • B1: Introducing Complex Numbers
          • B2: Working with Complex Numbers
          • B3: Complex Conjugates
          • B4: Introducing the Argand Diagram
          • B5: Introducing Modulus-Argument Form
          • B6: Multiply and Divide in Modulus-Argument Form
          • B7: Loci with Argand Diagrams
          • B8: De Moivre's Theorem
          • B9: z = re^(iθ)
          • B10: nth Roots of Unity
          • B11: Geometrical Problems
        • C: Matrices
          • C1: Introducing Matrices
          • C2: The Zero & Identity Matrices
          • C3: Matrix Transformations
          • C4: Invariance
          • C5: Determinants
          • C6: Inverse Matrices
          • C7: Simultaneous Equations
          • C8: Geometrical Interpretation
          • AQA C9: Factorising Determinants
          • AQA C10: Eigenvalues and Eigenvectors
          • AQA C11: Diagonalisation
          • EXTRA PURE C12: Cayley-Hamilton Theorem
        • D: Further Algebra & Functions
          • D1: Roots of Polynomials
          • D2: Forming New Equations
          • D3: Summations
          • D4: Method of Differences
          • D5: Introducing Maclaurin Series
          • D6: Standard Maclaurin Series
          • AQA D7: Limits and l'HoĚ‚pital's Rule
          • AQA D8: Polynomial Inequalities
          • AQA D9: Rational Function Inequalities
          • AQA D10: Modulus of Functions
          • AQA D11: Reciprocal Graphs
          • AQA D12: Linear Rational Functions
          • AQA D13: Quadratic Rational Functions
          • AQA D14: Discriminants
          • AQA D15: Conic Sections
          • AQA D16: Transformations
        • E: Further Calculus
          • E1: Improper Integrals
          • E2: Volumes of Revolution
          • E3: Mean Value
          • E4: Partial Fractions
          • E5: Differentiating Inverse Trig
          • E6: Integrals of the form (a^2-x^2)^(-½) and (a^2+x^2)^(-1)
          • AQA E7: Arc Length and Sector Area
          • AQA E8: Reduction Formulae
          • AQA E9: Limits
        • F: Further Vectors
          • F1: Equations of Lines
          • F2: Equations of Planes
          • F3: The Scalar Product
          • F4: Perpendicular Vectors
          • F5: Intersections
          • F6: The Vector Product
        • G: Polar Coordinates
          • G1: Polar Coordinates
          • G2: Polar Curves
          • G3: Polar Integration
        • H: Hyperbolic Functions
          • H1: Hyperbolic Functions
          • H2: Hyperbolic Calculus
          • H3: Hyperbolic Inverse
          • H4: Hyperbolic Inverse
          • H5: Hyperbolic Integration
          • AQA H6: Hyperbolic Identities
          • AQA H7: Hyperbolic Identities
        • I: Differential Equations
          • I1: 1st Order Differential Equations - Integrating Factors
          • I2: 1st Order Differential Equations - Particular Solutions
          • I3: Modelling
          • I4: 2nd Order Homogeneous Differential Equations
          • I5: 2nd Order Non-Homogeneous Differential Equations
          • I6: 2nd Order Non-Homogeneous Differential Equations
          • I7: Simple Harmonic Motion
          • I8: Damped Oscillations
          • I9: Systems of Differential Equations
          • AQA I10: Hooke's Law
          • AQA I11: Damping Force
        • J: Numerical Methods
          • AQA J1: Mid-Ordinate Rule & Simpson's Rule
          • AQA J2: Euler's Step by Step Method
          • AQA J3: Euler's Improved Step by Step Method
      • OCR MEI Modelling with Algorithms
        • A: Tracing an Algorithm
        • B: Bin Packing
        • C: Sorting Algorithms
        • D: Graph Theory
        • E: Minimum Spanning Trees
        • F: Dijkstra's Algorithm
        • G: Critical Path Analysis
        • H: Network Flows
        • I: Linear Programming
        • J: Simplex Algorithm
        • K: LP Solvers
      • OCR MEI Statistics a / Minor
        • A: PMCC
        • B: Linear Regression
        • C: PMCC Hypothesis Testing
        • D: Spearman’s Rank
        • E: Chi-Squared Contingency Table Tests
        • F: Discrete Random Variables
        • G: Discrete Uniform Distributions
        • H: Geometric Distributions
        • I: Binomial Distribution
        • J: Poisson Distribution
        • K: Goodness of Fit Tests
      • OCR MEI Mechanics a / Minor
        • A: Energy
        • B: Power
        • C: Friction
        • D: Momentum & Impulse
        • E: Collisions
        • F: Moments
        • G: Centre of Mass
        • H: Dimensional Analysis
      • Teaching Order Year 1
        • 01: Core Pure - Matrices: Basics
          • a. Introducing Matrices
          • b. The Zero & Identity Matrices
        • 02: Core Pure - Matrices: 2D Transformations
        • 03: Core Pure - Matrices: Invariant Points
        • 04: Core Pure - Matrices: 3D Transformations
        • 05: Modelling with Algorithms - Algorithms and Bin Packing
          • a. Tracing an Algorithm
          • b. Bin Packing
        • 06: Modelling with Algorithms - Sorting Algorithms
        • 07: Modelling with Algorithms - Graph Theory
        • 08: Modelling with Algorithms - Kruskal's, Prim's & Dijkstra's Algorithms
          • a. Minimum Spanning Trees
          • b. Dijkstra's Algorithm
        • 09: Core Pure - Complex Numbers: Basics
          • a. Introducing Complex Numbers
          • b. Working with Complex Numbers
          • c. Complex Conjugates
        • 10: Core Pure - Complex Numbers: Argand Diagrams
          • a. Introducing the Argand Diagram
          • b. Introducing Modulus-Argument Form
          • c. Multiply and Divide in Modulus-Argument Form
          • d. Loci with Argand Diagrams
        • 11: Modelling with Algorithms - Critical Path Analysis
        • 12: Modelling with Algorithms - Network Flows
        • 13: Modelling with Algorithms - Graphical Linear Programming
        • 14: Modelling with Algorithms - LP Solver: Shortest Path, CPA, Network Flow
        • 15: Modelling with Algorithms - Simplex Algorithm
        • 16: Modelling with Algorithms - LP Solver: Matching, Transportation Problem
        • 17: Core Pure - Series: Using Formulae
        • 18: Core Pure - Series: Method of Differences
        • 19: Core Pure - Matrices: Inverses, Singular Matrices, Simultaneous Equatio
          • a. Determinants
          • b. Inverse Matrices
          • c. Simultaneous Equations
        • 20: Core Pure - Matrices: Invariant Lines
        • 21: Core Pure - Roots of Polynomials
          • a. Roots of Polynomials
          • b. Forming New Equations
        • 22: Core Pure - Proof by Induction: Series
        • 23: Core Pure - Proof by Induction: Sequences
        • 24: Core Pure - Proof by Induction: Matrices
        • 25: Core Pure - Vectors: Scalar Product
          • a. The Scalar Product
          • b. Perpendicular Vectors
        • 26: Core Pure - Vectors: Planes
          • a. Geometrical Interpretation
          • b. Equations of Planes
        • 27: Statistics - PMCC
        • 28: Statistics - Linear Regression
        • 29: Statistics - PMCC Hypothesis Testing
        • 30: Statistics - Spearman's Rank Correlation Coefficient
        • 31: Statistics - Chi-Squared Contingency Table Tests
        • 32: Statistics - Discrete Random Variables
        • 33: Statistics - Discrete Uniform Distribution
        • 34: Statistics - Geometric Distribution
      • Teaching Order Year 2
        • 01: Core Pure - Polar Curves
          • a. Polar Coordinates
          • b. Polar Curves
        • 02: Core Pure - Vectors: Lines
          • a. Lines
          • b. Intersections
        • 03: Core Pure - Matrices: Determinant and Inverse of a 3x3 Matrix
          • a. Determinants
          • b. Inverse Matrices
          • c. Simultaneous Equations
        • 04: Mechanics - Energy
        • 11: Core Pure - Vectors: Vector Product
        • 12: Core Pure - Proof by Induction: Divisibility
        • 13: Core Pure - Complex Numbers: De Moivre's Theorem & Roots of Unity
          • a. De Moivre's Theorem
          • b. z = re^(iθ)
          • c. nth Roots of Unity
          • d. Geometrical Problems
        • 14: Core Pure - Partial Fractions & Series
          • a. Method of Differences with Partial Fractions
          • b. Partial Fractions
        • 15: Core Pure - Calculus: Improper Integrals
        • 16: Core Pure - Calculus: Mean Value
        • 17: Core Pure - Calculus: Volumes of Revolution
        • 18: Core Pure - Calculus: Areas with Polar Curves
        • 19: Core Pure - Calculus: Inverse Trig Functions
          • a. Differentiating Inverse Trig
          • b. Integrals of the form (a^2-x^2)^(-½) and (a^2+x^2)^(-1)
        • 20: Core Pure - Hyperbolic Functions
          • a. Hyperbolic Functions
          • b. Hyperbolic Calculus
          • c. Hyperbolic Inverse
          • d. More Hyperbolic Inverse
          • e. Hyperbolic Integration
        • 21: Core Pure - Series: Maclaurin Series
          • a. Introducing Maclaurin Series
          • b. Standard Maclaurin Series
        • 22: Core Pure - Differential Equations: First Order
          • a. Integrating Factors
          • b. Particular Solutions
          • c. Modelling
        • 23: Core Pure - Differential Equations: Second Order
          • a. 2nd Order Homogeneous Differential Equations
          • b. 2nd Order Non-Homogeneous Differential Equations
          • c. Examples
        • 24: Core Pure - Differential Equations: Damped Simple Harmonic Motion
          • a. Simple Harmonic Motion
          • b. Damped Oscillations
        • 25: Core Pure - Differential Equations: Systems of DEs
    • Core Maths Level 3 Certificate
      • Core Maths Resources
      • Teaching Videos
        • AQA Mathematical Studies Paper 1
        • AQA Mathematical Studies Paper 2A
        • Basics
    • GCSE to A-Level Maths Bridging the Gap
    • GCSE Maths
      • N: Number
        • N1
        • N2
        • N3
        • N4
        • N5
        • N6
        • N7
        • N8
    • Legacy A-Level Maths 2004
      • AQA C1
        • 1. Coordinate Geometry
        • 2. Surds
        • 3. Quadratics
        • 4. Inequalities
        • 5. Polynomials
        • 6: Equations of Circles
        • 7: Differentiation
        • 8: Integration
      • AQA C2
        • 1. Indices
        • 2. Differentiation & Integration
        • 3. Logarithms
        • 4. Graph Transformations
        • 5. Sequences & Series
        • 6: Binomial Expansion
        • 7: Trigonometry 1
        • 8: Trigonometry 2
      • AQA C3
        • 1. Exponentials & Logarithms
        • 2. Functions
        • 3. Modulus Functions
        • 4. Graph Transformations
        • 5. Trigonometry
        • 6. Differentiation
        • 7. Integration
        • 8. Solids of Revolution
        • 9. Numerical Methods
      • AQA C4
        • 1. Partial Fractions
        • 2. Parametric Equations
        • 3. Binomial Expansion
        • 4. Trigonometry
        • 5. Differential Equations
        • 6. Implicit Equations
        • 7. Vectors
      • AQA D1
        • 1. Tracing an Algorithm
        • 2. Sorting Algorithms
        • 3. Graph Theory
        • 4. Kruskal's Algorithm & Prim's Algorithm
        • 5. Dijkstra's Algorithm
        • 6. Bipartite Graphs
        • 7. Chinese Postman Algorithm
        • 8. The Travelling Salesperson Problem
        • 9. Linear Programming
      • AQA S1
        • 1. Mean & Standard Deviation
        • 2. Probability
        • 3. Binomial Probability
        • 4. The Normal Distribution
        • 5. Central Limit Theorem & Estimation
        • 6. Confidence Intervals
        • 7. Linear Regression
        • 8. The Product Moment Correlation Coefficient
      • OCR MEI C1
        • 1. Surds
        • 2. Coordinate Geometry
        • 3. Quadratics
        • 4. Inequalities
        • 5. Indices
        • 6. Translations
        • 7. Polynomials
        • 8. Binomial Expansion
        • 9. Equations of Circles
        • 10. Proof
      • OCR MEI C2
        • 1. Exponentials & Logarithms
        • 2. Trigonometry 1
        • 3. Differentiation 1
        • 4. The Trapezium Rule & Integration
        • 5. Sequences & Series
        • 6. Graph Transformations
        • 7. Trigonometry 2
        • 8. Differentiation 2
      • OCR MEI C3
        • 1. Exponentials & Logarithms
        • 2. Functions
        • 3. Modulus Functions
        • 4. Differentiation Rules
        • 5. Differentiating Functions
        • 6. Implicit Differentiation
        • 7. Integration
        • 8. Proof
      • OCR MEI C4
        • 1. Trigonometry
        • 2. Parametric Equations
        • 3. Binomial Expansion
        • 4. Vectors
        • 5. Partial Fractions
        • 6. Differential Equations
        • 7. The Trapezium Rule & Volumes of Revolution
        • 8. Comprehension
      • OCR MEI S1
        • 1. Probability
        • 2. Mean & Standard Deviation
        • 3. Discrete Random Variables
        • 4. Permutations & Combinations
        • 5. Binomial Probabilities
        • 6. Hypothesis Testing
        • 7. GCSE Recap & Odd and Ends
      • OCR MEI S2
        • 1. Correlation & Regression
        • 2. The Poisson Distribution
        • 3. The Normal Distribution
        • 4. The Chi-Squared Contingency Table Test
    • Legacy GCSE Maths Foundation
      • 01. Addition, Subtraction, Multiplication & Division
      • 02. Rounding & Negative Numbers
      • 03. Fractions
      • 04. Primes, Factors, Multiples, Squares, Cubes & Reciprocals
      • 05. Fractions, Decimals & Percentages
      • 06. Time, Money, Best Buys, Currency Exchange & Simple Interest
      • 07. Ratio & Speed, Distance, Time
      • 08. Types of Data, Questionnaires & Bar Charts
      • 09. Mean, Median, Mode & Range
      • 10. Pie Charts & Stem and Leaf Diagrams
      • 11. Frequency Polygons, Histograms & Scatter Graphs
      • 12. Probability
      • 13. Algebraic Expressions
      • 14. Solving Equations & Trial and Improvement
      • 15. Coordinates & Plotting Graphs
      • 16. Sequences & Inequalities
      • 17. Angles & Parallel Lines
      • 18. Triangles & Symmetry
      • 19. Quadrilaterals, Polygons & Tessellation
      • 20. Bearings & Constructions
      • 21. Circles
      • 22. Compound Shapes, 3D Shapes, Elevations & Nets
      • 23. Translations, Reflections, Rotations & Enlargement
      • 24. Pythagoras' Theorem & Metric to Imperial Conversion
TLMaths

AS ONLY

L: Data Presentation & Interpretation

Home > A-Level Maths > AS ONLY > L: Data Presentation & Interpretation

L1: Box Plots, Cumulative Frequency & Histograms

L2: Scatter Graphs

L3: Central Tendency & Variation

L4: Outliers & Cleaning Data

Report abuse
Page details
Page updated
Google Sites
Report abuse