Search this site
TLMaths
  • Home
    • A-Level Maths
      • AS ONLY
        • A: Proof
          • A1. Proof
        • B: Algebra & Functions
          • B1. Indices
          • B2. Surds
          • B3: Quadratics
          • B4: Simultaneous Equations
          • B5: Inequalities
          • B6: Polynomials
          • B7: Graphs & Proportion
          • B9: Graph Transformations
        • C: Coordinate Geometry
          • C1: Coordinate Geometry
          • C2: Circles
        • D: Sequences & Series
          • D1: Binomial Expansion
        • E: Trigonometry
          • E1: Trigonometry
          • E3: Trig Graphs
          • E5: Trigonometric Identities
          • E7: Trig Equations
        • F: Exponentials & Logarithms
          • F1: Exponentials
          • F2: Exponential Models
          • F3: Logarithms
          • F4: Laws of Logarithms
          • F5: Exponential & Logarithmic Equations
          • F6: Reduction to Linear Form
          • F7: Exponential Growth & Decay
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
        • H: Integration
          • H1: Fundamental Theorem of Calculus
          • H2: Indefinite Integrals
          • H3: Definite Integrals
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J3: Resultant & Parallel Vectors
          • J4: Position Vectors
          • J5: Vector Problems
        • K: Statistical Sampling
          • K1: The Large Data Set & Sampling Methods
        • L: Data Presentation & Interpretation
          • L1: Box Plots, Cumulative Frequency & Histograms
          • L2: Scatter Graphs
          • L3: Central Tendency & Variation
          • L4: Outliers & Cleaning Data
        • M: Probability
          • M1: Venn Diagrams, Tree Diagrams & Two-Way Tables
        • N: Statistical Distributions
          • N1: Discrete Random Variables & The Binomial Distribution
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O2: Binomial Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q1: Displacement, Velocity & Acceleration
          • Q2: Graphs of Motion
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
        • R: Forces & Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R3: Weight and Tension
          • R4: Newton's Third Law and Pulleys
      • 2nd Year ONLY
        • A: Proof
          • A1: Proof
        • B: Algebra & Functions
          • B6: Polynomials & Rational Expressions
          • B7: Graphs & Proportion
          • B8: Functions
          • B9: Graph Transformations
          • B10: Algebraic Fractions
          • B11: Modelling
        • C: Coordinate Geometry
          • C3: Parametric Equations
          • C4: Parametric Equation Modelling
        • D: Sequences & Series
          • D1: Binomial Expansion
          • D2: Sequences
          • D3: Sigma Notation
          • D4: Arithmetic Sequences
          • D5: Geometric Sequences
          • D6: Modelling with Sequences
        • E: Trigonometry
          • E1: Trigonometry
          • E2: Small Angle Approximation
          • E3: Trig Graphs
          • E4: Further Trigonometry
          • E5: Trigonometric Identities
          • E6: Compound Angles & Equivalent Forms
          • E7: Trig Equations
          • E8: Proving Trigonometric Identities
          • E9: Trigonometry in Context
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
          • G4: Further Differentiation
          • G5: Implicit Differentiation & Parametric Differentiation
          • G6: Forming Differential Equations
        • H: Integration
          • H2: Indefinite Integrals
          • H3: Definite Integrals & Parametric Integration
          • H4: Integration as the Limit of a Sum
          • H5: Further Integration
          • H6: Integration with Partial Fractions
          • H7: Differential Equations
          • H8: Differential Equations in Context
        • I: Numerical Methods
          • I1: The Change of Sign Method
          • I2: The x=g(x) Method & The Newton-Raphson Method
          • I3: Numerical Integration
          • I4: Numerical Methods in Context
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J5: Vector Problems
        • M: Probability
          • M2: Conditional Probability
          • M3: Modelling with Probability
        • N: Statistical Distributions
          • N2: The Normal Distribution
          • N3: Appropriate Distributions
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O3: Sample Means Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
          • Q5: Projectiles
        • R: Forces and Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R4: Newton's Third Law and Pulleys
          • R5: F=ma & Differential Equations
          • R6: The Coefficient of Friction
        • S: Moments
          • S1: Moments
      • FULL A-Level
        • A: Proof
          • A1: Proof
        • B: Algebra & Functions
          • B1: Indices
          • B2: Surds
          • B3: Quadratics
          • B4: Simultaneous Equations
          • B5: Inequalities
          • B6: Polynomials & Rational Expressions
          • B7: Graphs & Proportion
          • B8: Functions
          • B9: Graph Transformations
          • B10: Algebraic Fractions
          • B11: Modelling
        • C: Coordinate Geometry
          • C1: Coordinate Geometry
          • C2: Circles
          • C3: Parametric Equations
          • C4: Parametric Equation Modelling
        • D: Sequences & Series
          • D1: Binomial Expansion
          • D2: Sequences
          • D3: Sigma Notation
          • D4: Arithmetic Sequences
          • D5: Geometric Sequences
          • D6: Modelling with Sequences
        • E: Trigonometry
          • E1: Trigonometry
          • E2: Small Angle Approximation
          • E3: Trig Graphs
          • E4: Further Trigonometry
          • E5: Trigonometric Identities
          • E6: Compound Angles & Equivalent Forms
          • E7: Trig Equations
          • E8: Proving Trigonometric Identities
          • E9: Trigonometry in Context
        • F: Exponentials & Logarithms
          • F1: Exponentials
          • F2: Exponential Models
          • F3: Logarithms
          • F4: Laws of Logarithms
          • F5: Exponential & Logarithmic Equations
          • F6: Reduction to Linear Form
          • F7: Exponential Growth & Decay
        • G: Differentiation
          • G1: Differentiation from First Principles
          • G2: Differentiation
          • G3: Gradients
          • G4: Further Differentiation
          • G5: Implicit Differentiation & Parametric Differentiation
          • G6: Forming Differential Equations
        • H: Integration
          • H1: Fundamental Theorem of Calculus
          • H2: Indefinite Integrals
          • H3: Definite Integrals & Parametric Integration
          • H4: Integration as the Limit of a Sum
          • H5: Further Integration
          • H6: Integration with Partial Fractions
          • H7: Differential Equations
          • H8: Differential Equations in Context
        • I: Numerical Methods
          • I1: The Change of Sign Method
          • I2: The x=g(x) Method & The Newton-Raphson Method
          • I3: Numerical Integration
          • I4: Numerical Methods in Context
        • J: Vectors
          • J1: Introducing Vectors
          • J2: Magnitude & Direction of a Vector
          • J3: Resultant & Parallel Vectors
          • J4: Position Vectors
          • J5: Vector Problems
        • K: Statistical Sampling
          • K1: The Large Data Set & Sampling Methods
        • L: Data Presentation & Interpretation
          • L1: Box Plots, Cumulative Frequency & Histograms
          • L2: Scatter Graphs
          • L3: Central Tendency & Variation
          • L4: Outliers & Cleaning Data
        • M: Probability
          • M1: Venn Diagrams, Tree Diagrams & Two-Way Tables
          • M2: Conditional Probability
          • M3: Modelling with Probability
        • N: Statistical Distributions
          • N1: Discrete Random Variables & The Binomial Distribution
          • N2: The Normal Distribution
          • N3: Appropriate Distributions
        • O: Hypothesis Testing
          • O1: Introducing Hypothesis Testing
          • O2: Binomial Hypothesis Testing
          • O3: Sample Means Hypothesis Testing
        • P: Quantities & Units in Mechanics
          • P1: Quantities & Units in Mechanics
        • Q: Kinematics
          • Q1: Displacement, Velocity & Acceleration
          • Q2: Graphs of Motion
          • Q3: SUVAT
          • Q4: Calculus in Kinematics
          • Q5: Projectiles
        • R: Forces and Newton's Laws
          • R1: Introducing Forces & Newton's First Law
          • R2: Newton's Second Law
          • R3: Weight & Tension
          • R4: Newton's Third Law and Pulleys
          • R5: F=ma & Differential Equations
          • R6: The Coefficient of Friction
        • S: Moments
          • S1: Moments
      • Revision Tips Videos
      • Enrolment Work
      • Teaching Order Year 1
        • 101&116: Linear Graphs
          • a. Introducing Coordinate Geometry
          • b. Finding the Midpoint
          • c. Finding the Distance between Two Points
          • d. Finding the Gradient
          • e. The Equation of a Line
          • f. Parallel & Perpendicular Lines
          • g. Sketching Linear Graphs
          • h. Perpendicular Bisectors
          • i. Intersection of Lines
          • j. An Application of Linear Graphs
        • 102&111: Quadratic Graphs
          • a. The Difference of Two Squares
          • b. Factorising Quadratics
          • c. Sketching Quadratics from Factorised Form
          • d. Completing the Square
          • e. Sketching Quadratics from Completed Square Form
          • f. Solving Quadratics
          • g. Using the Discriminant
          • h. Using the Quadratic Formula
          • i. Sketching Quadratics using the Quadratic Formula
          • j. Using Quadratic Methods for Solving
        • 103-104: Indices
        • 103-104: Surds
          • a. Simplifying Surds
          • b. Rationalising the Denominator
        • 105-107: Exponentials and Logarithms
          • a. Introducing Exponentials
          • b. Asymptotes
          • c. Introducing Logarithms
          • d. Laws of Logarithms
          • e. Solving Basic Exponential Equations
          • f. Solving More Complicated Exponential Equations
          • g. Solving an Inequality Problem
        • 108: e^x and ln(x)
          • a. Introducing e
          • b. The Natural Logarithm
          • c. The Laws of Logarithms
          • d. Exponential Equations
          • e. Logarithmic Equations
          • f. The Gradient Function of e^(kx)
        • 109-110: Exponential Growth & Decay
        • 112-113: Polynomials
          • a. Introducing Polynomials
          • b. Polynomial Division
          • c. The Factor Theorem
        • 114: Graph Sketching
          • a. Sketching Polynomials
          • b. Reciprocal Graphs
          • c. Finding Points of Intersection
          • d. Direct & Inverse Proportion
        • 115: Graph Transformations
          • a. An Investigation into Transformations
          • b. Translations
          • c. Stretches
          • d. Reflections
          • e. Examples of Transformations
        • 117-118: Equation of a Circle
          • a. The Equation of a Circle
          • b. Sketching Circles
          • c. Completing the Square
          • d. Intersections with Circles
          • e. Circle Theorems
          • f. Perpendicular Bisectors
          • g. Tangents & Normals
        • 119-120: Reduction to Linear Form
        • 121-122: Inequalities
          • a. Introducing Inequalities, Set Notation and Interval Notation
          • b. Linear Inequalities
          • c. Quadratic Inequalities
          • d. Discriminant Inequalities
          • e. More Inequalities
          • f. Representing Inequalities Graphically
        • 123: Differentiation from First Principles
        • 124: Graphs of Motion
          • a. Position vs Displacement vs Distance
          • b. Velocity vs Speed
          • c. Acceleration and Deceleration
          • d. Displacement / Time Graphs
          • e. Velocity / Time Graphs
          • f. Acceleration / Time Graphs
          • g. Graphs of Motion
        • 125-126: Constant Acceleration - 1D SUVAT
          • a. Deriving the SUVAT formulae
          • b. Using the SUVAT formulae
          • c. Gravity
          • d. More Complicated SUVAT Problems
        • 127: Differentiating x^n
        • 128: Differentiation - Tangents & Normals
        • 129: Differentiation - Stationary Points
        • 130-131: Second Derivatives and Points of Inflection
          • a. Increasing / Decreasing
          • b. The Second Derivative Test
          • c. Types of Stationary Point
          • d. Convex & Concave
          • e. Points of Inflection
        • 132: Differentiation - Optimisation
        • 133: Linear Regression & PMCC
          • a. Bivariate Data
          • b. The Product Moment Correlation Coefficient
          • c. Regression Lines
          • d. Interpolation vs Extrapolation
        • 134-135: Probability
          • a. Basic Probability Concepts and Notation
          • b. Venn Diagrams
          • c. Independent & Mutually Exclusive Events
          • d. Conditional Probability
          • e. Tree Diagrams
          • f. Two-Way Tables
          • g. Histograms
          • h. More Conditional Probability
        • 136: Mean and Standard Deviation
          • a. Ungrouped Data
          • b. Grouped Data
          • c. Comparing Data Sets
          • d. Variance and Standard Deviation
        • 137: Outliers and Using Statistical Diagrams
          • a. Linear Coding
          • b. Identifying Outliers
          • c. Critiquing & Cleaning Data
          • d. Box Plots / Box and Whisker Diagrams
          • e. Cumulative Frequency Curves
          • f. Histograms
        • 138-139: Pascal's Triangle, nCr & Binomial Expansion
          • a. The Factorial Function
          • b. Pascal's Triangle
          • c. Algebra Problems with nCr
          • d. Binomial Expansion
          • e. Finding a Coefficient
          • f. Approximating using Binomial Expansion
        • 140: Discrete Random Variables
          • a. Introducing Discrete Random Variables
          • b. Discrete Random Variables as Algebraic Functions
        • 141: Binomial Distribution
        • 142-143: Binomial Hypothesis Testing
          • a. Introducing Hypothesis Testing
          • b. Binomial Hypothesis Testing
          • c. The Critical Region Method
        • ###: Sampling Methods & The Large Data Set
          • a. Sampling Methods
          • b. The Large Data Set
        • 144: Integration
          • a. Integrating x^n
          • b. Finding the Constant of Integration
        • 145 & 147: Integration - Finding Areas
          • a. The Fundamental Theorem of Calculus
          • b. Finding Areas
          • c. Definite Integrals
          • d. Areas Between Two Curves
        • 146: The Trapezium Rule
        • 148-149: 1D Variable Acceleration
        • 150: Proof
          • a. Introduction to Proof
          • b. Proof by Exhaustion
          • c. Proof by Deduction
          • d. Disprove by Counter-Example
        • 151: Basic Trigonometry
          • a. SOHCAHTOA
          • b. The Sine Rule
          • c. The Cosine Rule
          • d. The Area of a Triangle
        • 152: Radians, Sectors & Arc Length
          • a. Radians
          • b. Arc Length
          • c. Sector Area
        • 153: Vectors
          • a. Introducing Vectors
          • b. The Magnitude & Direction of a 2D Vector
          • c. The Angle Between Two Vectors
          • d. Resultant Vectors
          • e. Parallel and Unit Vectors
          • f. Collinear Points
          • g. Position Vectors
          • h. Vector Problems
        • 154-157: Forces & Newton's Laws
          • a. Introducing Forces
          • b. Force Diagrams
          • c. Resultant Forces
          • d. Newton's First Law
          • e. Newton's Second Law
          • f. Working with the SUVAT Equations
          • g. Weight & Tension
          • h. Newton's Third Law
          • i. Lifts and Scale Pans
        • 158-162: Trigonometry
          • a. Trig Graphs
          • b. Trigonometric Identities
          • c. Basic Trigonometric Equations
          • d. Quadratic Trigonometric Equations
          • e. Using tan(x) = sin(x) / cos(x)
          • f. Trigonometric Equations with Transformations
          • g. More Quadratic Trigonometric Equations
          • h. Using sin^2(x) + cos^2(x) = 1
          • i. sin(x) and cos(x) as Transformations of one another
        • 163: Coefficient of Friction
        • 164-165: Blocks / Pulleys on a Slope
      • Teaching Order Year 2
        • 201-203: Domain, Range & Composite Functions
          • a. What is a Function?
          • b. The Domain and Range of a Function
          • c. One-to-One, Many-to-One, One-to-Many, Many-to-Many
          • d. Restricting the Domain
          • e. Even & Odd Functions
          • f. Set Notation and Interval Notation for Domain & Range
          • g. Composite Functions
        • 204: Graph Transformations
        • 205: Inverse Functions
        • 206: Modulus Functions
        • 209-210,213-214: Sequences and Series
          • a. GCSE Sequences Revision
          • b. Inductive Definitions & Recurrence Relations
          • c. Describing Sequences
          • d. Sigma Notation
          • e. Arithmetic Sequences
          • f. Arithmetic Series
          • g. Geometric Sequences
          • h. Geometric Series
          • i. Sum to Infinity
          • j. Modelling with Sequences
        • 211-212: Moments
          • a. Introducing Moments
          • b. Centre of Mass
          • c. Equilibrium of a Rigid Body
          • d. Tilting
        • 215: Inverse Trigonometric Functions
        • 216-217: sec(x), cosec(x) & cot(x)
          • a. Introducing & Sketching cosec(x), sec(x) & cot(x)
          • b. Trigonometric Identities
          • c. Solving Trigonometric Equations
        • 218: Compound Angle Formulae
        • 219-220: Double Angle Formulae
        • 221-222: Differentiating Standard Functions & The Chain Rule
          • a. Differentiating Standard Functions
          • b. The Chain Rule
        • 223: Differentiation - Connected Rates of Change
        • 224: Differentiation - The Product Rule
        • 225: Differentiation - The Quotient Rule
        • 227-228: Implicit Differentiation
        • 229: Reversing the Chain Rule
        • 230-231: Integration by Substitution
        • 232-233: Integration by Parts
          • a. Integration by Parts Once
          • b. Integrating ln(x)
          • c. Integration by Parts Twice
          • d. Tabular Method for Integration by Parts
          • e. Further Integration
        • 234-235: Partial Fractions
          • a. Simplifying Algebraic Fractions
          • b. Adding and Subtracting Algebraic Fractions
          • c. Simplifying using Polynomial Division
          • d. Introducing Partial Fractions
          • e. Repeated Factors
          • f. Extensions
          • g. Partial Fractions with Binomial Expansion & Integration
        • 237-239: Numerical Methods
          • a. The Change of Sign Method
          • b. The x = g(x) Method
          • c. The Newton-Raphson Method
        • 240-242: Differential Equations
          • a. Solving Differential Equations
          • b. Differential Equations in Context
          • c. Forming Differential Equations
        • 243: 2D SUVAT
        • 244: 2D Variable Acceleration
        • 245-246: Projectiles
          • a. Introduction to Projectiles
          • b. Projectiles from the Ground - SUVAT method
          • c. Projectiles from a Height - SUVAT method
          • d. Derive a Formula for Maximum Height & Distance - SUVAT method
          • e. Projectiles from the Ground - Integration method
          • f. Projectiles from a Height - Integration method
          • g. Derive a Formula for Maximum Height & Distance - Integration method
        • 247-248: Binomial Expansion
          • a. Extending Binomial Expansion
          • b. The Range of Validity
        • 249: 3D Vectors
          • a. Introducing 3D Vectors
          • b. The Magnitude of a 3D Vector
          • c. The Angle Between Two 3D Vectors
          • d. Vector Problems
        • 250-251: Trigonometry - Harmonic Forms Rsin(θ + α), Rcos(θ + α)
        • 252: Small Angle Approximation
        • 253-255: The Normal Distribution
          • a. Introducing the Normal Distribution
          • b. Finding Probabilities
          • c. The Inverse Normal
          • d. Normal to Binomial & Normal to Histogram
          • e. Approximating the Binomial Distribution
          • f. Points of Inflection of the Normal Distribution
        • 256: Parametric Equations
          • a. Introducing Parametric Equations
          • b. Cartesian to Parametric
          • c. Graphing Parametric Curves
          • d. Parametric to Cartesian
          • e. Ellipses
          • f. Modelling with Parametric Equations
        • 257-259: Parametric Differentiation & Integration
          • a. Parametric Differentiation
          • b. Parametric Integration
        • 260: Proof by Contradiction
        • 261: Sample Means Hypothesis Testing
          • a. Sample Means & Standard Errors
          • b. Hypothesis Testing
        • 262: PMCC Hypothesis Testing
      • Casio Classwiz How To
      • Bumper Book of Integrals
    • A-Level Further Maths
      • PURE
        • A: Proof
          • A1: Proof by Induction
        • B: Complex Numbers
          • B1: Introducing Complex Numbers
          • B2: Working with Complex Numbers
          • B3: Complex Conjugates
          • B4: Introducing the Argand Diagram
          • B5: Introducing Modulus-Argument Form
          • B6: Multiply and Divide in Modulus-Argument Form
          • B7: Loci with Argand Diagrams
          • B8: De Moivre's Theorem
          • B9: z = re^(iθ)
          • B10: nth Roots of Unity
          • B11: Geometrical Problems
        • C: Matrices
          • C1: Introducing Matrices
          • C2: The Zero & Identity Matrices
          • C3: Matrix Transformations
          • C4: Invariance
          • C5: Determinants
          • C6: Inverse Matrices
          • C7: Simultaneous Equations
          • C8: Geometrical Interpretation
          • AQA C9: Factorising Determinants
          • AQA C10: Eigenvalues and Eigenvectors
          • AQA C11: Diagonalisation
          • EXTRA PURE C12: Cayley-Hamilton Theorem
        • D: Further Algebra & Functions
          • D1: Roots of Polynomials
          • D2: Forming New Equations
          • D3: Summations
          • D4: Method of Differences
          • D5: Introducing Maclaurin Series
          • D6: Standard Maclaurin Series
          • AQA D7: Limits and l'HoĚ‚pital's Rule
          • AQA D8: Polynomial Inequalities
          • AQA D9: Rational Function Inequalities
          • AQA D10: Modulus of Functions
          • AQA D11: Reciprocal Graphs
          • AQA D12: Linear Rational Functions
          • AQA D13: Quadratic Rational Functions
          • AQA D14: Discriminants
          • AQA D15: Conic Sections
          • AQA D16: Transformations
        • E: Further Calculus
          • E1: Improper Integrals
          • E2: Volumes of Revolution
          • E3: Mean Value
          • E4: Partial Fractions
          • E5: Differentiating Inverse Trig
          • E6: Integrals of the form (a^2-x^2)^(-½) and (a^2+x^2)^(-1)
          • AQA E7: Arc Length and Sector Area
          • AQA E8: Reduction Formulae
          • AQA E9: Limits
        • F: Further Vectors
          • F1: Equations of Lines
          • F2: Equations of Planes
          • F3: The Scalar Product
          • F4: Perpendicular Vectors
          • F5: Intersections
          • F6: The Vector Product
        • G: Polar Coordinates
          • G1: Polar Coordinates
          • G2: Polar Curves
          • G3: Polar Integration
        • H: Hyperbolic Functions
          • H1: Hyperbolic Functions
          • H2: Hyperbolic Calculus
          • H3: Hyperbolic Inverse
          • H4: Hyperbolic Inverse
          • H5: Hyperbolic Integration
          • AQA H6: Hyperbolic Identities
          • AQA H7: Hyperbolic Identities
        • I: Differential Equations
          • I1: 1st Order Differential Equations - Integrating Factors
          • I2: 1st Order Differential Equations - Particular Solutions
          • I3: Modelling
          • I4: 2nd Order Homogeneous Differential Equations
          • I5: 2nd Order Non-Homogeneous Differential Equations
          • I6: 2nd Order Non-Homogeneous Differential Equations
          • I7: Simple Harmonic Motion
          • I8: Damped Oscillations
          • I9: Systems of Differential Equations
          • AQA I10: Hooke's Law
          • AQA I11: Damping Force
        • J: Numerical Methods
          • AQA J1: Mid-Ordinate Rule & Simpson's Rule
          • AQA J2: Euler's Step by Step Method
          • AQA J3: Euler's Improved Step by Step Method
      • OCR MEI Modelling with Algorithms
        • A: Tracing an Algorithm
        • B: Bin Packing
        • C: Sorting Algorithms
        • D: Graph Theory
        • E: Minimum Spanning Trees
        • F: Dijkstra's Algorithm
        • G: Critical Path Analysis
        • H: Network Flows
        • I: Linear Programming
        • J: Simplex Algorithm
        • K: LP Solvers
      • OCR MEI Statistics a / Minor
        • A: PMCC
        • B: Linear Regression
        • C: PMCC Hypothesis Testing
        • D: Spearman’s Rank
        • E: Chi-Squared Contingency Table Tests
        • F: Discrete Random Variables
        • G: Discrete Uniform Distributions
        • H: Geometric Distributions
        • I: Binomial Distribution
        • J: Poisson Distribution
        • K: Goodness of Fit Tests
      • Teaching Order Year 1
        • 01: Core Pure - Matrices: Basics
          • a. Introducing Matrices
          • b. The Zero & Identity Matrices
        • 02: Core Pure - Matrices: 2D Transformations
        • 03: Core Pure - Matrices: Invariant Points
        • 04: Core Pure - Matrices: 3D Transformations
        • 05: Modelling with Algorithms - Algorithms and Bin Packing
          • a. Tracing an Algorithm
          • b. Bin Packing
        • 06: Modelling with Algorithms - Sorting Algorithms
        • 07: Modelling with Algorithms - Graph Theory
        • 08: Modelling with Algorithms - Kruskal's, Prim's & Dijkstra's Algorithms
          • a. Minimum Spanning Trees
          • b. Dijkstra's Algorithm
        • 09: Core Pure - Complex Numbers: Basics
          • a. Introducing Complex Numbers
          • b. Working with Complex Numbers
          • c. Complex Conjugates
        • 10: Core Pure - Complex Numbers: Argand Diagrams
          • a. Introducing the Argand Diagram
          • b. Introducing Modulus-Argument Form
          • c. Multiply and Divide in Modulus-Argument Form
          • d. Loci with Argand Diagrams
        • 11: Modelling with Algorithms - Critical Path Analysis
        • 12: Modelling with Algorithms - Network Flows
        • 13: Modelling with Algorithms - Graphical Linear Programming
        • 14: Modelling with Algorithms - LP Solver: Shortest Path, CPA, Network Flow
        • 15: Modelling with Algorithms - Simplex Algorithm
        • 16: Modelling with Algorithms - LP Solver: Matching, Transportation Problem
        • 17: Core Pure - Series: Using Formulae
        • 18: Core Pure - Series: Method of Differences
        • 19: Core Pure - Matrices: Inverses, Singular Matrices, Simultaneous Equatio
          • a. Determinants
          • b. Inverse Matrices
          • c. Simultaneous Equations
        • 20: Core Pure - Matrices: Invariant Lines
        • 21: Core Pure - Roots of Polynomials
          • a. Roots of Polynomials
          • b. Forming New Equations
        • 22: Core Pure - Proof by Induction: Series
        • 23: Core Pure - Proof by Induction: Sequences
        • 24: Core Pure - Proof by Induction: Matrices
        • 25: Core Pure - Vectors: Scalar Product
          • a. The Scalar Product
          • b. Perpendicular Vectors
        • 26: Core Pure - Vectors: Planes
          • a. Geometrical Interpretation
          • b. Equations of Planes
        • 27: Statistics - PMCC
        • 28: Statistics - Linear Regression
        • 29: Statistics - PMCC Hypothesis Testing
        • 30: Statistics - Spearman's Rank Correlation Coefficient
        • 31: Statistics - Chi-Squared Contingency Table Tests
        • 32: Statistics - Discrete Random Variables
        • 33: Statistics - Discrete Uniform Distribution
        • 34: Statistics - Geometric Distribution
      • Teaching Order Year 2
        • 01: Core Pure - Polar Curves
          • a. Polar Coordinates
          • b. Polar Curves
        • 02: Core Pure - Vectors: Lines
          • a. Lines
          • b. Intersections
        • 03: Core Pure - Matrices: Determinant and Inverse of a 3x3 Matrix
          • a. Determinants
          • b. Inverse Matrices
          • c. Simultaneous Equations
        • 11: Core Pure - Vectors: Vector Product
        • 12: Core Pure - Proof by Induction: Divisibility
        • 13: Core Pure - Complex Numbers: De Moivre's Theorem & Roots of Unity
          • a. De Moivre's Theorem
          • b. z = re^(iθ)
          • c. nth Roots of Unity
          • d. Geometrical Problems
        • 14: Core Pure - Partial Fractions & Series
          • a. Method of Differences with Partial Fractions
          • b. Partial Fractions
        • 15: Core Pure - Calculus: Improper Integrals
        • 16: Core Pure - Calculus: Mean Value
        • 17: Core Pure - Calculus: Volumes of Revolution
        • 18: Core Pure - Calculus: Areas with Polar Curves
        • 19: Core Pure - Calculus: Inverse Trig Functions
          • a. Differentiating Inverse Trig
          • b. Integrals of the form (a^2-x^2)^(-½) and (a^2+x^2)^(-1)
        • 20: Core Pure - Hyperbolic Functions
          • a. Hyperbolic Functions
          • b. Hyperbolic Calculus
          • c. Hyperbolic Inverse
          • d. More Hyperbolic Inverse
          • e. Hyperbolic Integration
        • 21: Core Pure - Series: Maclaurin Series
          • a. Introducing Maclaurin Series
          • b. Standard Maclaurin Series
        • 22: Core Pure - Differential Equations: First Order
          • a. Integrating Factors
          • b. Particular Solutions
          • c. Modelling
        • 23: Core Pure - Differential Equations: Second Order
          • a. 2nd Order Homogeneous Differential Equations
          • b. 2nd Order Non-Homogeneous Differential Equations
          • c. Examples
        • 24: Core Pure - Differential Equations: Damped Simple Harmonic Motion
          • a. Simple Harmonic Motion
          • b. Damped Oscillations
        • 25: Core Pure - Differential Equations: Systems of DEs
    • Core Maths Level 3 Certificate
      • Core Maths Resources
      • Teaching Videos
        • AQA Mathematical Studies Paper 1
        • AQA Mathematical Studies Paper 2A
        • Basics
    • GCSE to A-Level Maths Bridging the Gap
    • Legacy A-Level Maths 2004
      • AQA C1
        • 1. Coordinate Geometry
        • 2. Surds
        • 3. Quadratics
        • 4. Inequalities
        • 5. Polynomials
        • 6: Equations of Circles
        • 7: Differentiation
        • 8: Integration
      • AQA C2
        • 1. Indices
        • 2. Differentiation & Integration
        • 3. Logarithms
        • 4. Graph Transformations
        • 5. Sequences & Series
        • 6: Binomial Expansion
        • 7: Trigonometry 1
        • 8: Trigonometry 2
      • AQA C3
        • 1. Exponentials & Logarithms
        • 2. Functions
        • 3. Modulus Functions
        • 4. Graph Transformations
        • 5. Trigonometry
        • 6. Differentiation
        • 7. Integration
        • 8. Solids of Revolution
        • 9. Numerical Methods
      • AQA C4
        • 1. Partial Fractions
        • 2. Parametric Equations
        • 3. Binomial Expansion
        • 4. Trigonometry
        • 5. Differential Equations
        • 6. Implicit Equations
        • 7. Vectors
      • AQA D1
        • 1. Tracing an Algorithm
        • 2. Sorting Algorithms
        • 3. Graph Theory
        • 4. Kruskal's Algorithm & Prim's Algorithm
        • 5. Dijkstra's Algorithm
        • 6. Bipartite Graphs
        • 7. Chinese Postman Algorithm
        • 8. The Travelling Salesperson Problem
        • 9. Linear Programming
      • AQA S1
        • 1. Mean & Standard Deviation
        • 2. Probability
        • 3. Binomial Probability
        • 4. The Normal Distribution
        • 5. Central Limit Theorem & Estimation
        • 6. Confidence Intervals
        • 7. Linear Regression
        • 8. The Product Moment Correlation Coefficient
      • OCR MEI C1
        • 1. Surds
        • 2. Coordinate Geometry
        • 3. Quadratics
        • 4. Inequalities
        • 5. Indices
        • 6. Translations
        • 7. Polynomials
        • 8. Binomial Expansion
        • 9. Equations of Circles
        • 10. Proof
      • OCR MEI C2
        • 1. Exponentials & Logarithms
        • 2. Trigonometry 1
        • 3. Differentiation 1
        • 4. The Trapezium Rule & Integration
        • 5. Sequences & Series
        • 6. Graph Transformations
        • 7. Trigonometry 2
        • 8. Differentiation 2
      • OCR MEI C3
        • 1. Exponentials & Logarithms
        • 2. Functions
        • 3. Modulus Functions
        • 4. Differentiation Rules
        • 5. Differentiating Functions
        • 6. Implicit Differentiation
        • 7. Integration
        • 8. Proof
      • OCR MEI C4
        • 1. Trigonometry
        • 2. Parametric Equations
        • 3. Binomial Expansion
        • 4. Vectors
        • 5. Partial Fractions
        • 6. Differential Equations
        • 7. The Trapezium Rule & Volumes of Revolution
        • 8. Comprehension
      • OCR MEI S1
        • 1. Probability
        • 2. Mean & Standard Deviation
        • 3. Discrete Random Variables
        • 4. Permutations & Combinations
        • 5. Binomial Probabilities
        • 6. Hypothesis Testing
        • 7. GCSE Recap & Odd and Ends
      • OCR MEI S2
        • 1. Correlation & Regression
        • 2. The Poisson Distribution
        • 3. The Normal Distribution
        • 4. The Chi-Squared Contingency Table Test
    • Legacy GCSE Maths Foundation
      • 01. Addition, Subtraction, Multiplication & Division
      • 02. Rounding & Negative Numbers
      • 03. Fractions
      • 04. Primes, Factors, Multiples, Squares, Cubes & Reciprocals
      • 05. Fractions, Decimals & Percentages
      • 06. Time, Money, Best Buys, Currency Exchange & Simple Interest
      • 07. Ratio & Speed, Distance, Time
      • 08. Types of Data, Questionnaires & Bar Charts
      • 09. Mean, Median, Mode & Range
      • 10. Pie Charts & Stem and Leaf Diagrams
      • 11. Frequency Polygons, Histograms & Scatter Graphs
      • 12. Probability
      • 13. Algebraic Expressions
      • 14. Solving Equations & Trial and Improvement
      • 15. Coordinates & Plotting Graphs
      • 16. Sequences & Inequalities
      • 17. Angles & Parallel Lines
      • 18. Triangles & Symmetry
      • 19. Quadrilaterals, Polygons & Tessellation
      • 20. Bearings & Constructions
      • 21. Circles
      • 22. Compound Shapes, 3D Shapes, Elevations & Nets
      • 23. Translations, Reflections, Rotations & Enlargement
      • 24. Pythagoras' Theorem & Metric to Imperial Conversion
TLMaths

N: Statistical Distributions

Home > A-Level Maths > FULL A-Level > N: Statistical Distributions

N1: Discrete Random Variables & The Binomial Distribution

N2: The Normal Distribution

N3: Appropriate Distributions

Report abuse
Page details
Page updated
Google Sites
Report abuse